Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
Adv Mater ; 35(28): e2300911, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912711

RESUMO

The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.


Assuntos
Fotoquímica , Luz , Eletrólitos/química , Fotoquímica/instrumentação , Fotoquímica/métodos , Óxidos/química , Compostos de Rutênio/química , Nanofios/química
2.
Food Chem ; 418: 135841, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36989647

RESUMO

5'-Guanosine monophosphate (5'-GMP) is one main source of freshness in broths. Herein, an electrochemical platform based on a novel ternary nanocomposite glassy carbon electrode modified with advantageously-united gold nanoparticles, 2,2'-bipyridine hydrated ruthenium (Ru(bpy)2Cl2) and sulfonated multi-walled carbon nanotubes (SMWCNTs)was prepared and used to detect 5'-GMP. After conditions optimization, the best performance of the electrochemical sensor was found in acidic media, including high specificity, sensitivity and selectivity. The electrochemical sensor exhibited a wide linear range under the optimal conditions. The enhanced sensitivity of this sensor was attributed to the Ru(bpy)2Cl2 and functionalized SMWCNTs that provided high electrical conductivity and electrocatalytic properties during electrochemical reaction. Precise analysis of 5'-GMP in actual broth samples showed satisfactory recovery. Thus, the sensor can be used in the market and food enterprises.


Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Guanosina Monofosfato , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Compostos de Rutênio/química , Piridinas/química
3.
J Inorg Biochem ; 238: 112052, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334365

RESUMO

The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.


Assuntos
Complexos de Coordenação , Rutênio , Rutênio/química , Complexos de Coordenação/química , Peróxido de Hidrogênio , Compostos de Rutênio/química , Óxido Nítrico/química , DNA
4.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080160

RESUMO

The direct oxidation reaction of isoxazolidines plays an important role in organic chemistry, leading to the synthesis of biologically active compounds. In this paper, we report a computational mechanistic study of RuO4-catalyzed oxidation of differently N-substituted isoxazolidines 1a-c. Attention was focused on the endo/exo oxidation selectivity. For all the investigated compounds, the exo attack is preferred to the endo one, showing exo percentages growing in parallel with the stability order of transient carbocations found along the reaction pathway. The study has been supported by experimental data that nicely confirm the modeling results.


Assuntos
Compostos de Rutênio , Rutênio , Catálise , Oxirredução , Rutênio/química , Compostos de Rutênio/química
5.
ChemMedChem ; 17(20): e202200444, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36041073

RESUMO

Herein we illustrate the formation and characterization of new paramagnetic ruthenium compounds, trans-P-[RuCl(PPh3 )2 (pmt)]Cl (1) (Hpmt=1-((pyridin-2-yl)methylene)thiosemicarbazide), trans-P-[RuCl(PPh3 )2 (tmc)]Cl (2) (Htmc=1-((thiophen-2-yl)methylene)thiosemicarbazide) and a diamagnetic ruthenium complex, cis-Cl, trans-P-[RuCl2 (PPh3 )2 (btm)] (3) (btm=2-((5-hydroxypentylimino)methyl)benzothiazole). Agarose gel electrophoresis experiments of the metal compounds illustrated dose-dependent binding to gDNA by 1-3, while methylene blue competition assays suggested that 1 and 2 are also DNA intercalators. Assessment of the effects of the compounds on topoisomerase function indicated that 1-3 are capable of inhibiting topoisomerase I activity in terms of the ability to nick supercoiled plasmid DNA. The cytotoxic activities of the metal complexes were determined against a range of cancer cell lines versus a non-tumorigenic control cell line, and the complexes were, in general, more cytotoxic towards the cancer cells, displaying IC50 values in the low micromolar range. Time-dependent stability studies showed that in the presence of strong nucleophilic species (such as DMSO), the chloride co-ligands of 1-3 are rapidly substituted by the former as proven by the suppression of the substitution reactions in the presence of an excess amount of chloride ions. The metal complexes are significantly stable in both DCM and an aqueous phosphate buffer containing 2 % DMSO.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Organometálicos , Rutênio , Tiossemicarbazonas , Compostos de Rutênio/química , Compostos de Rutênio/metabolismo , Rutênio/farmacologia , Rutênio/química , Tiossemicarbazonas/farmacologia , Complexos de Coordenação/toxicidade , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Dimetil Sulfóxido , Azul de Metileno , Substâncias Intercalantes , Cloretos , DNA Topoisomerases Tipo I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Benzotiazóis/farmacologia , Fosfatos , Compostos Organometálicos/química
6.
Dalton Trans ; 51(19): 7658-7672, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35510940

RESUMO

Ru(II) polypyridyl complexes are widely used in biological fields, due to their physico-chemical and photophysical properties. In this paper, a series of new chiral Ru(II) polypyridyl complexes (1-5) with the general formula {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} (bpy = 2,2'-bipyridyl; X,Y-sal = 5-bromosalicylaldehyde (1), 3,5-dibromosalicylaldehyde (2), 5-chlorosalicylaldehyde (3), 3,5-dichlorosalicylaldehyde (4) and 3-bromo-5-chlorosalicylaldehy (5)) were synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. Also, the structures of complexes 1 and 5 were determined by X-ray crystallography; these results showed that the central Ru atom adopts a distorted octahedral coordination sphere with two bpy and one halogen-substituted salicylaldehyde. DFT and TD-DFT calculations have been performed to explain the excited states of these complexes. The singlet states with higher oscillator strength are correlated with the absorption signals and are mainly described as 1MLCT from the ruthenium centre to the bpy ligands. The lowest triplet states (T1) are described as 3MLCT from the ruthenium center to the salicylaldehyde ligand. The theoretical results are in good agreement with the observed unstructured band at around 520 nm for complexes 2, 4 and 5. Biological studies on human cancer cells revealed that dihalogenated ligands endow the Ru(II) complexes with enhanced cytotoxicity compared to monohalogenated ligands. In addition, as far as the type of halogen is concerned, bromine is the halogen that provides the highest cytotoxicity to the synthesized complexes. All complexes induce cell cycle arrest in G0/G1 and apoptosis, but only complexes bearing Br are able to provoke an increase in intracellular ROS levels and mitochondrial dysfunction.


Assuntos
Compostos de Rutênio/química , Rutênio , Aldeídos , Halogenação , Halogênios , Humanos , Ligantes , Rutênio/química , Rutênio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Int J Biol Macromol ; 209(Pt B): 2097-2108, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504415

RESUMO

Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.


Assuntos
Glicina , Compostos de Rutênio/química , Tecidos Suporte , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Celulose/química , Celulose/farmacologia , Glicina/farmacologia , Neurônios , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Tecidos Suporte/química
8.
Dalton Trans ; 51(10): 3937-3953, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35171173

RESUMO

Ruthenium complexes are being studied extensively as anticancer drugs following the inclusion of NAMI-A and KP1019 in phase II clinical trials for the treatment of metastatic phase and primary tumors. Herein, we designed and synthesized four organometallic Ru(II)-arene complexes [Ru(η6-p-cymene)(L)Cl] (1), [Ru(η6-benzene)(L)Cl] (2), [Ru(η6-p-cymene)(L)N3] (3) and [Ru(η6-benzene)(L)N3] (4) [HL = (E)-N'-(pyren-1-ylmethylene)thiopene-2-carbohydrazide] that have anticancer, antimetastatic and two-photon cell imaging abilities. Moreover, in the transfer hydrogenation of NADH to NAD+, these compounds also display good catalytic activity. All the complexes, 1-4, are well characterized by spectroscopic techniques (NMR, mass, FTIR, UV-vis and fluorescence). The single crystal X-ray diffraction technique proved that the ligand L coordinates through an N,O-bidentate chelating fashion in the solid-state structures of complexes 1 and 2. The stability study of the complexes was performed through UV-visible spectroscopy. The cytotoxicities of all the complexes were screened through MTT assay and the results revealed that the complexes have potential anticancer activity against various cancerous cells (HeLa, MCF7 and A431). Studies with spectroscopic techniques revealed that complexes 1-4 exhibit strong interactions with biological molecules i.e. proteins (HSA and BSA) and CT-DNA. The density functional theory (DFT-D) method has been employed in the present study to know the interaction between DNA and complexes by calculating the HOMO and LUMO energy. A plausible mechanism for NADH oxidation has also been explored and the DFT calculations are found to be in accord with the experimental observation. Furthermore, we have investigated intracellular reactive oxygen species (ROS) generation capabilities in the MCF7 breast cancer cell line. The Hoechst/PI dual staining method confirmed the apoptosis mode of cell death. Meanwhile, complexes 1-4 show capabilities to prevent the metastasis phase of cancer cells by inhibiting cell migration.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pirenos/química , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Antineoplásicos/síntese química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Complexos de Coordenação , DNA/química , Humanos , Ligação Proteica , Compostos de Rutênio/síntese química , Análise de Célula Única
9.
J Inorg Biochem ; 229: 111731, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131616

RESUMO

Metal complexes studied to date under the framework of metalloglycomics belong to the M-NH3 general motif (polynuclear platinum compounds; Werner's complex), acting mainly as cationic hydrogen bonding species toward glycosaminoglycans (GAGs), an interaction termed metalloshielding. In this paper, we expand our studies to substitution-inert octahedral cobalt(III) and ruthenium(II) complexes bearing the non­hydrogen-donor ligand 2,2'-bipyridine (bpy). We identified by NMR spectroscopy that [Co(bpy)3]3+ binds to the highly sulfated synthetic pentasaccharide, Fondaparinux (FPX), while no major perturbations are found in the presence of [Ru(bpy)3]2+. This result is of significance as both coordination compounds have analogous 3D structures. Although weakly binding to the model GAG, [Ru(bpy)3]2+ completely inhibits the enzymatic cleavage of FPX by the bacterial heparinase II (HepII) enzyme, which is not observed for the Co(III) analog. This observation suggests a direct inhibition of HepII by the Ru compound, through a mechanism that is unrelated to metalloshielding.


Assuntos
2,2'-Dipiridil/química , Cobalto/química , Complexos de Coordenação/química , Compostos de Rutênio/química , Fondaparinux/química , Glicosaminoglicanos/química , Humanos , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Compostos Organometálicos/química , Polissacarídeo-Liases/química , Rutênio/química
10.
Dalton Trans ; 51(4): 1333-1343, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34989734

RESUMO

Three ruthenium(III) complexes with pyrazolopyrimidine [Ru(Ln)(H2O)Cl3] (1-3, n = 1-3) were prepared and characterized. These Ru(III) compounds show strong cytotoxicity against six cancer cell lines and low toxicity to normal human liver cells. Particularly, they exhibited stronger cytotoxicity to SK-OV-3 cells than cisplatin. Mechanism studies revealed that complex 1 inhibited tumor cell invasion and suppressed cell proliferation, induced apoptosis by elevating the levels of intracellular ROS (reactive oxygen species) and free calcium (Ca2+), and reduced mitochondrial membrane potential (ΔΨ). It also activated the caspase cascade, accompanied with upregulation of cytochrome c, Bax, p53, Apaf-1 and downregulation of Bcl-2. Moreover, complex 1 caused cell cycle arrest at S phase by inhibiting the expression of CDC 25, cyclin A2 and CDK 2 proteins, and induced DNA damage by interacting with DNA and inhibiting the topoisomerase I enzyme. Complex 1 exhibited efficient in vivo anticancer activity in a model of SK-OV-3 tumor xenograft.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/uso terapêutico , Piridinas/uso terapêutico , Compostos de Rutênio/uso terapêutico , Animais , Antineoplásicos/química , Apoptose , Benzimidazóis , Cálcio , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Dano ao DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Membranas Mitocondriais/efeitos dos fármacos , Piridinas/química , Espécies Reativas de Oxigênio , Compostos de Rutênio/química , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Dalton Trans ; 51(5): 1888-1900, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018930

RESUMO

The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 µM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.


Assuntos
Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fenantrolinas/química , Compostos de Rutênio/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Sistema Livre de Células , Humanos , Peróxido de Hidrogênio , Camundongos , Modelos Moleculares , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Compostos de Rutênio/química
12.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056783

RESUMO

To meet the demand for alternatives to commonly used antibiotics, this paper evaluates the antimicrobial potential of arene-ruthenium(II) complexes and their salts, which may be of value in antibacterial treatment. Their antimicrobial activity (MIC, MBC/MFC) was examined in vitro against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris and Candida albicans and compared with classic antibiotics used as therapeutics. Selected arene-ruthenium(II) complexes were found to have synergistic effects with oxacillin and vancomycin against staphylococci. Their bactericidal effect was found to be associated with cell lysis and the ability to cut microbial DNA. To confirm the safety of the tested arene-ruthenium(II) complexes in vivo, their cytotoxicity was also investigated against normal human foreskin fibroblasts (HFF-1). In addition, the antioxidant and thus pro-health potential of the compounds, i.e., their nonenzymatic antioxidant capacity (NEAC), was determined by two different methods: ferric-TPTZ complex and DPPH assay.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hidrocarbonetos Aromáticos/farmacologia , Pirazóis/farmacologia , Compostos de Rutênio/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , Hidrocarbonetos Aromáticos/química , Masculino , Oxacilina/farmacologia , Pirazóis/química , Compostos de Rutênio/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/farmacologia
13.
Toxicol Appl Pharmacol ; 434: 115822, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896434

RESUMO

Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Malus/química , Floretina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Compostos de Rutênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Neoplasias Experimentais , Floretina/química , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos de Rutênio/química , Compostos de Rutênio/toxicidade , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944502

RESUMO

Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimônio/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Cloretos/farmacologia , Indazóis/farmacologia , Compostos Organoáuricos/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Rutênio/farmacologia , SARS-CoV-2/efeitos dos fármacos , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Animais , Antimônio/química , Antivirais/química , Linhagem Celular , Cloretos/química , Chlorocebus aethiops , Descoberta de Drogas , Humanos , Indazóis/química , Compostos Organoáuricos/química , Compostos Organometálicos/química , Compostos de Rutênio/química , Células Vero
15.
Anal Bioanal Chem ; 413(30): 7411-7419, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34731261

RESUMO

This research proposed a replacement-type electrochemiluminescent (ECL) aptasensor for lysozyme (LYZ) detection at trace levels based on a full-electric modification electrode (FEMG) coupled to silica-coated Ru(bpy)32+/silver nanospheres (Ru/SNs@SiO2). The multi-walled carbon nanotubes-doped-thionine (MWCNTs/PTn) electropolymerized modified electrode was decorated with electrodeposited gold nanoparticles (GNs) to form the FEMG. Then, the FEMG was utilized as sensing substrates for the immobilization of the anti-lysozyme aptamer (LA); the stability and number of LA attaching onto the FEMG were dramatically increased. The ECL measurement was used to evaluate the hybridization reaction of LA and the Ru/SNs@SiO2 marked DNA probe, and it was noted as Ia. After the combination of the LA with the LYZ, the target-triggered replacement of the DNA probe was actualized and the ECL measurement descended to Ib. The ECL difference (ΔIECL = Ia - Ib) before and after the replacement event was utilized for quantitation of LYZ. As a result, the fabricated aptasensor with great sensitivity and specificity achieved a wide linear range (10 fM-10 pM) and a low limit of detection (5 fM). It obtained satisfactory recovery for the detection of LYZ in human serum, and the results were identified with the LYZ ELISA kit. Therefore, the proposed ECL sensor is expected to become a promising approach in the field of biomolecule detection.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrodos , Medições Luminescentes/métodos , Muramidase/sangue , Nanosferas/química , Compostos de Rutênio/química , Dióxido de Silício/química , Prata/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura
16.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638791

RESUMO

Ruthenium complexes are developed as substitutes for platinum complexes to be used in the chemotherapy of hematological and gynecological malignancies, such as ovarian cancer. We synthesized and screened 14 ruthenium half-sandwich complexes with bidentate monosaccharide ligands in ovarian cancer cell models. Four complexes were cytostatic, but not cytotoxic on A2780 and ID8 cells. The IC50 values were in the low micromolar range (the best being 0.87 µM) and were similar to or lower than those of the clinically available platinum complexes. The active complexes were cytostatic in cell models of glioblastoma, breast cancer, and pancreatic adenocarcinoma, while they were not cytostatic on non-transformed human skin fibroblasts. The bioactive ruthenium complexes showed cooperative binding to yet unidentified cellular target(s), and their activity was dependent on reactive oxygen species production. Large hydrophobic protective groups on the hydroxyl groups of the sugar moiety were needed for biological activity. The cytostatic activity of the ruthenium complexes was dependent on reactive species production. Rucaparib, a PARP inhibitor, potentiated the effects of ruthenium complexes.


Assuntos
Neoplasias/tratamento farmacológico , Compostos de Rutênio/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Compostos de Rutênio/síntese química , Compostos de Rutênio/química , Compostos de Rutênio/uso terapêutico
17.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639127

RESUMO

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10-7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Assuntos
Nucleotídeos/química , Compostos de Rutênio/farmacologia , Compostos de Sulfidrila/química , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Compostos de Rutênio/química , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo , Tripanossomíase/parasitologia
18.
Mikrochim Acta ; 188(11): 398, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34716815

RESUMO

A simple carbon nanodot-based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Substâncias Luminescentes/química , Medições Luminescentes/métodos , MicroRNAs/sangue , Pontos Quânticos/química , Técnicas Biossensoriais/instrumentação , Carbono/química , Complexos de Coordenação/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Insuficiência Cardíaca/sangue , Humanos , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , Medições Luminescentes/instrumentação , Masculino , MicroRNAs/genética , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Compostos de Rutênio/química
19.
J Am Chem Soc ; 143(43): 17910-17914, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677969

RESUMO

Herein, a single biomolecule is imaged by electrochemiluminescence (ECL) using Ru(bpy)32+-doped silica/Au nanoparticles (RuDSNs/AuNPs) as the ECL nanoemitters. The ECL emission is confined to the local surface of RuDSNs leading to a significant enhancement in the intensity. To prove the concept, a single protein molecule at the electrode is initially visualized using the as-prepared RuDSN/AuNPs nanoemitters. Furthermore, the nanoemitter-labeled antibody is linked at the cellular membrane to image a single membrane protein at one cell, without the interference of current and optical background. The success in single-biomolecule ECL imaging solves the long-lasting task in the ultrasensitive ECL analysis, which should be able to provide more elegant information about the protein in cellular biology.


Assuntos
Queratina-19/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Imagem Individual de Molécula/métodos , Complexos de Coordenação/química , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Luminescência , Medições Luminescentes/métodos , Células MCF-7 , Estudo de Prova de Conceito , Compostos de Rutênio/química , Dióxido de Silício/química
20.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445620

RESUMO

The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)-polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)-polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(µ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L-1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)-polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Animais , Apoptose , Neoplasias da Mama/patologia , Proliferação de Células , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...